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Resumo: Micorremediação tem sido estudada como alternativa para remoção 
de pesticidas de efluentes. Foi avaliada a capacidade in vitro dos fungos 
basidiomicetos Pleurotus ostreatus e Pleurotus eryngii como potenciais agentes 
de remediação de efluentes que contêm herbicidas. P. ostreatus e P. eryngii 
foram cultivados em meios líquidos contendo, respectivamente, bentazona 
(4,5 g L-1) e 2,4-D (5,4 g L-1), analisando a capacidade de crescimento dos 
fungos (biomassa seca), remoção dos compostos (CG/MS) e toxicidade do 
meio após tratamento com os fungos (testes Allium cepa). P. ostreatus e P. 
eryngii se mostraram tolerantes à bentazona e 2,4-D, respectivamente, uma 
vez que cresceram nos meios líquidos. A análise CG/MS mostrou que os 
fungos não foram eficientes na remoção da bentazona e do 2,4-D após 7 e 
21 dias de cultivo, respectivamente. Em ambos os casos os efluentes finais 
resultaram tóxicos para A. cepa. Apesar de não ter sido comprovada a remoção 
de pesticidas, os resultados do trabalho mostram que P. ostreatus e P. eryngii 
têm o potencial de tolerar a bentazona e o 2,4-D em meios líquidos. Portanto, 
algumas condições de cultivo diferentes devem ser testadas para explorar o 
potencial destes fungos para a remoção de pesticidas.

Abstract: Mycoremediation has been studied as an alternative to removing 
pesticides from wastewater. Here, we evaluated the in vitro capability of 
the basidiomycetes Pleurotus ostreatus and Pleurotus eryngii as potential 
remediation agents of effluents containing the pesticides bentazon and 2,4-
D, respectively. P. ostreatus and P. eryngii were cultivated in liquid media 
containing bentazon (4.5 g L-1) and 2,4-D (5.4 g L-1), respectively. Biomass dry 
weight and CG/MS analysis were performed to evaluate the fungi’ capability to 
grow in the contaminated media as well as to degrade the studied pesticides. To 
evaluate the toxicity of the wastewater after the cultivation of the fungi, tests with 
Allium cepa were conducted. P. ostreatus and P. eryngii presented tolerance to 
the bentazon and 2,4-D, respectively. CG/MS analysis showed that the fungi 
were not efficient in the removal of bentazon and 2,4-D after seven and twenty-
one days of cultivation, respectively. Finally, in both cases, the final effluents 
were toxic to A. cepa. Despite the non-removal of pesticides, P. ostreatus and 
P. eryngii have the potential to tolerate bentazon and 2,4-D in liquid media. 
Therefore, some different cultivation conditions must be tested to explore the 
potential of these fungi for pesticide removal.
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1 INTRODUCTION

Pesticides are chemical compounds widely used to protect crops from undesirable organisms, 
such as weeds, fungi, insects, and pathogens (SJERPS et al., 2019). Nevertheless, several of these 
pesticides remain in the effluents of conventional crops, which are normally discharged untreated into 
waterways (YADAV et al., 2015). Consequently, the use of these substances worldwide has led to 
the contamination of environmental matrices as ground and surface water, including drinking water 
(SJERPS et al., 2019; QUINTANA et al., 2019; CHEN et al., 2018; XIE et al., 2019; XU et al., 2019; 
CALDAS et al., 2013; POSTIGO et al., 2010; KÖCK-SCHULMEYER et al., 2014; VIEIRA et al., 2016). 
It is a major environmental and public health problem since most of these compounds offer a high-
level risk to aquatic organisms. Therefore, the occurrence of pesticides in the environment has been 
extensively studied in the last decades (CHEN et al., 2018; XIE et al., 2019).

Among the pesticides that may remain in wastewater, there are the 3-isopropyl-1H-2,1,3-
benzothiadiazin-4(3H)-one2,2-dioxide (Bentazon) and the 2,4-dichloro phenoxy acetic acid (2,4-D). 
Bentazon is a post-emerging herbicide largely applied in cereal crops and it is one of the most widely 
used herbicides in conventional agriculture and gardening (SALMAN; HAMEED, 2010). Besides, the 
systemic herbicide 2,4-D is used globally in the selective control of nest plants in agriculture and forestry 
(ZUANAZZI et al., 2020). Several studies have related the occurrence of bentazon in the environment 
(CALDAS et al., 2013; POSTIGO et al., 2010; VIEIRA et al., 2016) and recent studies have shown the 
contamination of surface and underground water bodies by 2,4-D (ECHEVERRI GONZÁLEZ et al., 
2019; CASTRO LIMA et al., 2020).

The findings of the occurrence and risks of pesticides have heightened the need for advanced 
treatments to remove the contaminants from the environment since conventional treatment is not capable 
to remove such compounds. In this context, mycoremediation has been studied as an economical, eco-
friendly, and effective biological tool that recruits fungi to degrade, transform or immobilize contaminants 
from the environment (PURNOMO et al., 2010; COELHO-MOREIRA et al., 2018; PEREIRA et al., 2013; 
CUPUL et al., 2014; FREITAS et al., 2017; GANASH et al., 2016; SERBENT et al., 2019; 2020; KAPAHI; 
SACHDEVA, 2017; BOSCO; MOLLEA, 2019; AKHTAR; MANNAN, 2020). 

Fungi tend to degrade a vast number of contaminants (HARMS et al., 2011; SINGH, 2006; VALDEZ-
VAZQUEZ et al., 2020; ZAPANA-HUARACHE et al., 2020) and the white-rot fungi (WRF) are one of 
the major ecological categories of wood-decaying fungi (RILEY et al., 2014) responsible for complex 
ecosystem processes going on during wood decay and nutrient cycling (LEONHARDT et al., 2019). WRF 
can be promising candidates for the treatment of contaminated wastes (AKHTAR; MANNAN, 2020), 
but their potential in bioremediation processes regarding chlorinated compounds is still far from being 
fully explored (SERBENT et al., 2020). Furthermore, basidiomycetes, such as the Pleurotus genre, are 
known for producing enzymes including lignin peroxidase, manganese peroxidase, and laccase, which 
promote the degradation of substances (PURNOMO et al., 2010; SINGH, 2006; ZAPANA-HUARACHE 
et al., 2020). 

In this context, this study aims to evaluate the in vitro tolerance and growth of Pleurotus ostreatus 
(Jacq.) P. Kumm. and Pleurotus eryngii (Fr.) Quél. in liquid medium contaminated with bentazon and 
2,4-D, respectively, as well as the capability of these fungi to remove the corresponding herbicide from 
spiked water and evaluation of its toxicity by Allium cepa test after treatments.
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2 MATERIAL AND METHODS 

2.1 Source of pesticides and fungi

Bentazon was obtained from its commercial form, Basagram®, containing 600 g L-1 of the active 
ingredient, and 2,4-D was obtained from its commercial form, Aminol®, containing 670 g L-1 of the 
active ingredient. In both cases, the spiked water was prepared with sterilized and deionized water. P. 
ostreatus and P. eryngii were provided by the culture collection of the laboratory of microorganisms and 
biotechnological processes at the Federal University of Santa Catarina.

2.2 In vitro evaluation of pesticides tolerance and removal by strains of Pleurotus

P. ostreatus and P. eryngii were cultivated in Petri dishes containing potato dextrose agar (PDA) at 
27 ± 2 °C before inoculation in the liquid medium and its subsequent analyses.

Figure 1 summarizes the studied treatments and each analysis for the in vitro evaluation of pesticide 
tolerance and removal by Pleurotus fungi.

Figure 1. Studied treatments and each analysis for the in vitro evaluation of pesticide tolerance and 
removal by Pleurotus fungi.
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2.3 Fungal growth in liquid culture media

To establish the tolerance and removal of bentazon by P. ostreatus and 2,4-D by P. eryngii, 
experiments of liquid cultures were conducted in a stationary state. 

To represent real concentrations of the pesticides in wastewater (CUPUL et al., 2014; FREITAS et 
al., 2017; GANASH et al., 2016; SERBENT et al., 2019; 2020), the bentazon and 2,4-D were diluted in 
deionized water separately, resulting in 4.5 g L-1 (T0BZ) and 5.4 g L-1 (T02,4D) initial solutions, respectively. 
Deionized water was used as a control treatment for both pesticide experiments. Each sample was 
prepared in a glass flask previously sterilized.

For bentazon experiments, five mycelial disks (diameter: 8.0 mm) of P. ostreatus were inoculated in 
T0BZ (T1BZ) and control treatment (CTBZ). The samples (T0BZ, T1BZ, and CTBZ) were incubated at 27 ± 1 
°C for 7 days (SANTOS et al., 2019; KIST et al., 2020).

For 2,4-D experiments, five mycelial disks (diameter: 8.0 mm) of P. eryngii were inoculated in T02,4D 
(T12,4D) and control treatment (CT2,4D). The samples (T02,4D, T12,4D, and CT2,4D) were incubated at 27 ± 1 
°C for 21 days.

2.4 Biomass dry weight of fungi and pesticides concentration

After the incubation period, the biomass dry weight of the P. ostreatus and P. eryngii in liquid cultures 
were performed according to the procedure proposed by Souza et al. (2006).

Bentazon and 2,4-D concentration in the samples was analyzed by gas chromatography/mass 
spectrometry (GC/MS) as determined by the EPA 8270D method (US EPA, 2014), in which the 
quantification limit is 0.1 µg L-1.

2.5 Toxicity evaluation of treated water by Allium test

The toxicity test was conducted with Allium cepa L. (onion) samples as the adapted method used 
by Marinho et al. (2017). First, 20 onions with similar shapes and sizes were selected, peeled, and their 
roots were carefully removed. Then, the onions were placed in plastic cups with tap water in the dark 
for 72 hours. After this period, the roots were observed and the ones with similar sizes were selected for 
the toxicity test. These roots were removed, and the bulbs were placed in plastic cups with the samples 
T0BZ, T1BZ, T02,4D, and T12,4D in the dark for 72 hours. Additionally, a control sample (tap water) was 
tested. After 3 days, the roots were measured.

2.6 Data analysis

Statistical analysis of all data obtained in the liquid cultures assays was performed through the t-test 
and the significance levels were set at 95% (p<0.05).

3 RESULTS AND DISCUSSION

3.1 In vitro evaluation of pesticides tolerance and removal by Pleurotus fungi

After the incubation period, it was observed mycelial growth of P. ostreatus and P. eryngii for the 
treatments of liquid cultures containing bentazon and 2,4-D (T1BZ and T12,4D). Therefore, the studied 
fungi may tolerate the pesticides, growing in liquid environments that are similar to the real conditions 
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of pesticide concentrations. 
The biomass dry weight of fungi and the pesticide concentrations after the incubation period for all 

the studied treatments is presented in Table 1.

Table 1 - Biomass dry weight of fungi and the pesticide concentrations of each treatment after the 
incubation period.

Treatment Biomass dry weight (g) Pesticide concentration (g/L)

CTBZ 0.001 ± 0.000 a 0

T0BZ 0 0.56 ± 0.03 a

T1BZ 1.585 ± 0.247 b 0.76 ± 0.01 b

CT2,4D 0.001 ± 0.000 a 0

T02,4D 0 0.03 ± 3.72 c

T12,4D 0.012 ± 0.002 c 0.03 ± 3.29 c

* vertical lowercase letters indicate the results of comparisons between treatments for each measured variable. 
Equal letters indicate means that did not statistically differ from each other (t-test, p ≤ 0, 05).

Treatments T1BZ and T12,4D presented biomass dry weight statistically different. The fungal biomass 
of P. ostreatus cultivated in a liquid medium containing bentazon was higher than the fungal biomass 
of P. eryngii cultivated in a liquid medium containing 2,4-D, though the cultivation time (7 and 21 days, 
respectively) as indicated in Table 1. The biomass dry weight of control treatments (CTBZ and CT2,4D) 
represented just the mycelial disks inoculated in each one due to the absence of an energy source for 
fungi growth. No biomass dry weight was found for initial treatments (T0BZ and T02,4D) because of the 
absence of fungi.

The pesticide concentration of the initial solutions (T0BZ and T02,4D) was lower than the treatments with 
fungi growth (T1BZ and T12,4D). It was observed that bentazon and 2,4-D concentration after the incubation 
period decreased when compared to the concentration added at the beginning of the experiment (4.5 g 
L-1 and 5.4 g L-1) independently of the fungi inoculation. This indicates that the herbicide may have been 
degraded or volatilized during the incubation time. 

The results of GC/MS analysis obtained for 2,4-D treatments have no significant statistical difference 
between them. However, the bentazon concentration was statistically different between the treatments 
T0 BZ and T1BZ as well as about 2,4-D treatments. 

In the in vitro evaluation of bentazon (4.5 g L-1) and 2,4-D (5.4 g L-1) tolerance by P. ostreatus and P. 
eryngii, respectively, the results showed that the fungi can grow up in aqueous media containing these 
pesticides and, consequently, can tolerate them. The obtained results match those observed in different 
studies (COELHO-MOREIRA et al., 2018; PEREIRA et al., 2013; FREITAS et al., 2017; GANASH et al., 
2016; MARINHO et al., 2017) that reported the fungi tolerance and their potential as agent degradation 
of pesticides. The biomass dry weight of P. ostreatus and P. eryngii suggests that the fungi can use 
bentazon and 2,4-D, respectively, as a source of nutrients. Several reports have shown the ability 
of P. ostreatus to grow in liquid medium with pesticides, such as chlorotoluron, isoproturon, diuron, 
linuron, propanil, malathion, lindane, and 2,4-dichlorophenol (GANASH et al., 2016; SILVA et al., 2009; 
RIGAS et al., 2005; KHADRANI et al., 1999; TORRES-DUARTE et al., 2009). Although, some of these 
experiments highlighted that P. ostreatus mycelial growth was inhibited by increasing the concentration 
of the pesticide (malathion, lindane, and 2,4-dichlorophenol). 

Previous studies showed that other basidiomycetes can grow in the presence of bentazon. Coelho-
Moreira et al. (2018) studied bentazon removal by Ganoderma lucidum in a solid culture medium, using 
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corn cob as substrate. Despite the authors observed that the herbicide had a negative effect on the 
mycelial growth of G. lucidum, the fungus could grow up in bentazon concentrations below 14.4 g L-1. 
Castillo et al. (2001) observed the development of Phanerochaete chrysosporium in the presence of 
bentazon (0.22 g L-1) in bioreactors with unsterile wheat straw. In both studies, the fungi could degrade 
the herbicide. 

Silva et al. (2009) observed similar behavior of compound removal by P. ostreatus in an experiment 
where the 2,4-D concentration was 23% lower than the added amount. The degradation of 2,4-D in 
different concentrations by T. versicolor (Hernández Mendieta et al., 2013) and P. chrysosporium 
(DONNELLY et al., 1993) was also reported, though some high concentrations can inhibit their 
performance (HERNÁNDEZ MENDIETA et al., 2013). 

In liquid cultures, the inability of P. ostreatus to remove bentazon and P. eryngii to remove 2,4-
D was observed in this study. Despite the fungal tolerance to pesticides, the cultivation conditions, 
such as exposure time and pesticide concentration, may not favor the removal of these substances. 
The same behavior was observed by Donnelly et al. (1993) in an experiment using atrazine as a 
pollutant, where all fungi grow up in the medium containing the pesticide, but none removed it. In 
addition, the role of P. eryngii and its enzymes have been explored in degrading aromatic hydrocarbon 
as DDT (PURNOMO; MAULIANAWATI; KAMEI, 2019), fluorene (HADIBARATA; KRISTANTI, 2014), 
naphthalene (HADIBARATA et al., 2013), and bisphenolic compounds (CHANG; CHANG, 2016). 

The degradation of pollutants by fungi is influenced by several factors, including the tested strain, 
enzyme production, pesticide initial concentration, exposure time, and cultivation conditions (SERBENT 
et al., 2019). In some organisms, when nutritional sources are present in the medium, the production of 
enzymes used to metabolize other carbon sources is limited to save energy (MARINHO et al., 2017), 
which may slow or decrease pesticide removal. Moreover, the mechanisms in the microbial conversion 
of a pesticide involve secondary metabolism (VALLI; GOLD, 1991), which strongly depends on the 
cultivation time.

Additionally, the need for supplementation of the culture medium using carbon and nitrogen sources 
depends on the fungus species. Ganash et al. (2016) observed that the degradation of malathion by 
P. ostreatus was increased when the mineral liquid medium was supplemented with lignin at 0,2%. In 
that study, the removal of the pesticide reached 76% after 25 days of culture. However, in the presence 
of P. ostreatus, the degradation of the herbicide 2,4-DCP in a liquid medium with wheat straw was 
better in the absence of glucose, reaching 54% of removal in 96 hours of cultivation (SILVA et al., 
2009). According to Donnelly et al. (1993), some fungi needed nitrogen supplementation in the culture 
media for the complete degradation of 2,4-D. Coelho-Moreira et al. (2018) reported that after 5 days 
of G. lucidum cultivation in a solid and a liquid culture medium with 7.2 g L-1 and 0.6 g L-1 of bentazon 
respectively, there was no significant removal of the compound. However, after 10 days of treatment, 
it was detected a removal of 88% of bentazon in the solid medium and 53% in the liquid medium. In 
experiments in a sucrose liquid medium, Ferreira-Guedes et al. (2012) observed no degradation of 2,4-
D by Penicillium chrysogenum fungus after the first week of the experiment. However, after 25 days of 
culture, 18% of this compound was removed. According to these findings, it can be inferred that longer 
detention time could positively influence the mycoremediation of this herbicide.

Under certain cultivation conditions, basidiomycete fungi can produce nonspecific extracellular 
enzymes that promote the degradation of pollutant molecules such as laccases, manganese peroxidases, 
and lignin peroxidases. P. eryngii and P. ostreatus produce versatile peroxidase that is capable to 
oxidate aromatic compounds (BANSAL; KANWAR, 2013), such as the ones present in organochloride 
pesticides. Additionally, Mougin et al. (2000) analyzed the degradation of the herbicide isoxaflutole 
by the fungi Phanerochaete chrysosporium and Trametes versicolor in a liquid medium. The authors 
noted that the metabolization of the herbicide occurred mainly at the end of the growth phase, after 15 
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days of cultivation of both fungi. This may be related to the production of oxidative enzymes such as 
laccases. Coelho-Moreira et al. (2018) reported that the herbicides bentazon (20 mM) and diuron (80 
µM) stimulated laccase production above 140 and 90 U g-1, respectively, at 10 days of cultivation.

3. 2 Toxicity evaluation of treated water by Allium test

The results obtained in the Allium test for both bentazon and 2,4-D pesticides with P. ostreatus and 
P. eryngii, respectively, are shown in Table 2. 

Table 2 - Root growth in each studied treatment in the Allium test.
Treatment Root growth (cm)

CTBZ 4.30 ± 0.30 a

T0BZ 0.45 ± 0.15 b

T1BZ 0.55 ± 0.05 b

CT2,4D 3.78 ± 0.96 a

T02,4D 0.33 ± 0.03 b

T12,4D 0.45 ± 0.13 b

* Vertical lowercase letters indicate the results of comparisons between treatments for each measured variable. 
Equal letters indicate means that did not statistically differ from each other (t-test, p ≤ 0, 05).

The samples T0BZ, T1BZ, T02,4D, and T12,4D presented low root growth when compared to tap water 
(CTBZ and CT2,4D) (Table 2). The tap water samples presented a significant difference compared to the 
samples in that the roots were exposed to treatments containing bentazon and 2,4-D pesticides. All the 
treatments containing pesticides present no significant statistical difference in root growth.

Many tests have been developed to identify the harmful effects of chemicals on animals and plants, 
with emphasis on plant-based assays for being short-term and low-cost alternatives (YILMAZ et al., 
2018). To verify the toxicity of samples, some assays can be performed, such as the Allium test. This 
is an interesting tool for conducting toxicity and mutagenicity research using onions (FREITAS et al., 
2017; MARINHO et al., 2017) once they are cultivated during all seasons and have a low economic cost. 
Its roots are activated when the bulb contacts water, however, the presence of toxic compounds in the 
water reduces the root growth due to the delay in division cellular (MARINHO et al., 2017). 

A. cepa test is a useful bioindicator of cytotoxicity and genotoxicity and serves as an alert for the 
population that uses pesticides indiscriminately (DATTA et al., 2018). The results obtained in the Allium 
cepa test highlighted the toxicity of the liquid culture with bentazon and 2,4-D due to the low root growth 
of onions observed in the samples containing the pesticides when compared to tap water. The toxicity of 
the samples remains after the treatments with P. ostreatus and P. eryngii because of the non-removal of 
pesticide compounds in the studied cultivation conditions, as demonstrated in GC/MS analysis.

No data was found on toxicity tests with bentazon in the literature. However, other studies demonstrate 
the detoxification of pesticides by basidiomycete fungi. In Lactuca sativa bioassays, Coelho-Moreira et 
al. (2018) observed a reduction in toxicity after fungal treatment compared to untreated samples. In 
another study, the Allium cepa test showed an inhibition decrease from 100% to 54% after atrazine 
treatment with Aspergillus niger in liquid culture after the incubation period of 7 days (MARINHO et 
al., 2017). Additionally, these authors obtained favorable results in the removal of pesticides methyl 
parathion and atrazine. After seven days of treatment with the fungus Aspergillus niger, the Allium cepa 
test demonstrated that the toxicity of the treated sample had decreased, as there was a growth of the 
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roots of the onions.
Fatima and Ahmad (2006) analyzed the EROD (o ethoxy resorufin O-demethylase) activity in 

Allium cepa exposed to 2,4-D, as a response of the organism to the presence of pollutants in the 
aquatic environment. The 2,4-D caused about a 40-fold rise in EROD at a dose of 1.2 ppb. The authors 
concluded that the strategy allows the detection of this pesticide in water monitoring studies before 
using analytical techniques like HPLC. 

Özkul et al. (2016) investigated the cytogenetic effects of different concentrations of 2,4-D (0.67, 
1.34, 2.01, 2.68, 3.35, and 4.02 mg/L) on Allium cepa bulblets’ root tips treated for 24 and 48 h. The 
results showed that the herbicide affected mitotic index (MI), whose value increased significantly at 
three lower concentrations (0.67, 1.34, 2.01 mg/L) after treatment with 2,4-D for 24 h and decreased 
significantly at higher concentrations (2.68, 3.35, and 4.02 mg/L). Also, the authors showed that roots 
were very sensitive to the herbicide if they had been in touch with 2,4-D (4.02 mg/L) for a longer time 
(48 h). 

The 2,4-D incidence and the cytotoxic and genotoxic potential of sediment elutriate of rivers from 
southern Brazil, by Allium cepa test, as evidenced by Rambo et al. (2017) while Martins and Campos 
Pereira (2018) reported that the herbicide Tordon®, which has in its formulation the compound 4-amino-
3,5,6-trichloro picolinic acid (Picloram - 103,6 g/L) and 2,4-D (402 g/L) inhibited (concentrations of 0.1%, 
1.0%, 10%, and 100% of the herbicide) or significantly decreased the length of the onion roots at 
concentrations of 0.01%, 0.001%, and 0.0001%.

Besides the non-removal of bentazon and 2,4-D, the toxicity results obtained in our study may be 
explained by the possible occurrence of pesticide metabolites that are not metabolized by the fungi and 
inhibit the onions-root growth.

There are different mechanisms involved in pesticide conversion by microorganisms. Depending on 
the environmental conditions, each mechanism can produce metabolites that are different from the initial 
compound (SERBENT et al., 2019). Consequently, even the pesticide is susceptible to degradation 
by fungi, in some cases, its degradation process can produce compounds that are more toxic than 
the pesticide itself (LURQUIN, 2016). On the other hand, some metabolites may be more accessible 
to fungal degradation compared to the initial compound, as proved by Vroumsia et al. (2005). The 
authors showed that different fungal strains more efficiently degraded the 2,4-DCP than the 2,4-D, 
suggesting that this behavior can occur because of the compounds’ bindings and free phenolic radicals. 
Besides, other fungal strains better-degraded 2,4-D than 2,4-DCP, leading to hypothesizing that the 
conversion of 2,4-D and 2,4-DCP are catalyzed by different enzymes (VROUMSIA et al. 2005). Similarly, 
the metabolites of bentazon on surface water were identified as more toxic than the initial substance for 
fish and invertebrates while the opposite occurs for other aquatic organisms (EFSA, 2015).

Considering the obtained data on this study it may be hypothesized that the studied fungi are capable 
to tolerate 2,4-D and bentazon, but the cultivation conditions were not favorable to the degradation of 
the compounds. This can be explained by the fact that the degradation ability depends on the fungi 
species, the contaminant and its concentration, and the nitrogen concentration in the culture media 
(DONNELLY et al., 1993). In addition, these authors also concluded that it may have an increase in 
degradation rate with the biomass increase and the enzymatic activity when there is a high amount of 
carbohydrate in the culture media. Finally, the basidiomycete fungi are considered potential accumulators 
(BOSCO; MOLLEA, 2019). The aromatic herbicides’ degradation appears to be through the compounds’ 
incorporation into the fungus tissue and not through the complete degradation of the contaminant 
(mineralization) (DONNELLY et al., 1993).

Thus, the use of P. ostreatus and P. eryngii for mycoremediation of bentazon and 2,4-D in contaminated 
effluents needs to be further studied. To investigate the role of this organism in the treatment of bentazon 
and 2,4-D contaminated effluents, new experimental conditions must be tested. In addition, the tests 
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should include the monitoring and quantification of enzymatic activity as well as the pesticide degradation 
metabolites. As a result, it could be possible to know the moment that P. ostreatus and P. eryngii start to 
release oxidative enzymes and if it contributes to bentazon and 2,4-D metabolization and its metabolites.

Also, the fungi tolerance to herbicides should investigate the mycelium characteristics after herbicide 
exposition regarding reproductive structures, hyphae feature, and exposition time–structure-property 
relationships, which are relevant to a variety of applications of mycelium as is the case of a bioreactor 
for the treatment of contaminated effluents (SERBENT et al., 2020). 

4 CONCLUSION

Due to the characteristics of WRF, the purpose of the present study was to evaluate the potential 
use of Basidiomycota fungi as degradation agents of bentazon and 2,4-D by assessing their tolerance, 
growth, and removal capacity of pesticides in liquid cultures. In summary, the fungus P. ostreatus and P. 
eryngii, grew up in liquid culture mediums with 4.5 g L-1 of bentazon and 5.4 g L-1 of 2,4-D, respectively, 
and tolerate this environment. Despite that, the fungi were not efficient in removing the pesticides after 
seven and twenty-one days of cultivation. The Allium cepa test evidenced that samples containing 
pesticides were still toxic after the treatments with fungi, in the studied conditions. The results represent 
the starting point of mycoremediation processes for future applications on a pilot and full scale.
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